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Mathematical models for physical phenomena possess in many cases a certain structure. Hamil-
tonian systems are an example for such structured systems which preserve physical quantities, e.g.
the Hamiltonian (function) over time. Thus, these systems are well-suited to model non-dissipative
phenomena.

When faced with data from such systems, e.g. measurements or field solutions of numerical com-
putations, it is important to take the structure into account as prior knowledge in the data analysis
task. In computational mathematics, preservation of such structures shows great improvements in
stability and accuracy e.g. for numerical integration [2] or model reduction [3]. Similar results can be
expected for data analysis tasks such as feature extraction, filtering, classification, regression or data
reconstruction.

The underlying structure of a Hamiltonian system is the so-called symplectic geometry. For finite-
dimensional systems, the Hamiltonian system is described by the triple (V, ω2n,H) with

1. a (necessarily even-dimensional) phase-space V which we identify with V ∼= R2n,

2. a symplectic form ω2n : V× V→ R which is a skew-symmetric, non-degenerate bilinear form,

3. a smooth Hamiltonian function H : V→ R.

The tuple (V, ω2n) is called symplectic (linear) vector space. In the canonical case, the symplectic
form is given by

ω2n(v,w) = vTJ2nw, J2n =

[
0n In

−In 0n

]
where J2n is the so-called (canonical) Poisson matrix composed of identity matrices In ∈ Rn×n and
matrices with all-zeros 0n ∈ Rn×n.

We present two data-based methods to extract

(a) the most important 2k-dimensional orthogonal, symplectic subspace (VB, 〈·, ·〉 , ω2k) with the
canonical scalar product 〈·, ·〉 : V× V→ R or

(b) a 2k-dimensional (in general) non-orthogonal but symplectic subspace (VB, ω2k)

spanned by a given data set. Both methods are findings in the field of model reduction [3, 1] but
should be considered in a broader view of physics-preserving projections for data analysis.

To this end, we stack our m ∈ N data samples of even dimension 2n ∈ N as vectors bi ∈ R2n,
i = 1, . . . ,m, in the columns of B = [b1, . . . , bm] ∈ R2n×m. To derive the optimal orthogonal,
symplectic subspace (a), a complexification of the data matrix B and the Complex SVD are used
following [3]. The result is a minimizer of the optimization problem

minimize
V ∈R2n×2k

m∑
i=1

∥∥∥(I2n − V JT
2kV

TJ2n︸ ︷︷ ︸
=:V +

)bi

∥∥∥2
2

such that V TV = I2k and V +V = I2k.

which is the sum of the squared errors of the residuals (I2n−V V +)bi of the data sample bi with respect
to the symplectic projection P = V V + onto an orthogonal, symplectic subspace. We emphasize that
V + = JT

2kV
TJ2n is the so-called symplectic inverse which is in general not equal to the Moore-Penrose

pseudo inverse which occasionally uses the same notation (·)+.



To derive a non-orthogonal, symplectic subspace (b), we use an SVD-like decomposition [4, 5] of
the data matrix B which reads

B = SDQT,


S ∈ R2n×2n symplectic matrix
D ∈ R2n×m

Q ∈ Rm×m orthogonal matrix
, D =

p q p m−2p−q


Σs 0 0 0 p

0 Iq 0 0 q

0 0 0 0 n−p−q
0 0 Σs 0 p

0 0 0 0 n−p

,

with the so-called symplectic singular values Σs = diag(σs1, . . . , σ
s
p) ∈ Rp×p, σsi > 0 for 1 ≤ i ≤ p where

p, q ∈ N contain information of the “degree of symplecticity” of the image of B. The approach [1] then
follows the central idea of the Principal Component Analysis (PCA) (also known as Proper Orthogonal
Decomposition (POD)) which is used to derive the most important 2k-dimensional orthogonal subspace
of the image of B: the extraction of the symplectic subspace relies on the truncation of the symplectic
singular vectors S = [s1, . . . , s2n] of an SVD-like decomposition instead of the left-singular vectors
U = [u1, . . . ,u2n] of an SVD B = UΣV T (which is done in PCA).

As application of both methods (a) and (b), we consider three scenarios:

1. we compress simulation data obtained from numerical simulations and give error bounds for the
compression,

2. we compress/reduce the dimension of a Hamiltonian system using symplectic model reduction,

3. we estimate the state for a given set of measurements which is a data reconstruction task.
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